Lava XOLO X900 - AnandTech Review


Reader's in India, did you have a chance to try out this phone? would you buy/recommend it?

Lava XOLO X900 - World's first Intel phone


Discover what makes XOLO X900 with Intel Inside® the benchmark on speed and performance. Please head to the site directly by hitting the title.

Intel Mobile Comm's is looking for a Senior Verif Engineer


This opening is in Bangalore, India and the company is looking forward to close it at the earliest Job Description: 1. About 5-7 years of experience in functional verification with at least 3-4 years in HVL's like E language/specman and System Verilog. 2. Good experience at both module and sub-system/SOC level verification 3. Good knowledge of Verilog/VHDL 4. Good knowledge of UVM/eRM methodology 5. Should have developed complete test bench architecture, designing and coding of test bench components like UVCs/eVCs including checkers, monitors, scoreboards, BFMs 6. Should have architected the test plan including functional coverage and driven functional verification closure of complex DUTs 7. Expertise in sequences and sequence libraries 8. Working knowledge of register package model, regressions tools like eManager and perl scripting. 9. Should have working knowledge of ARM based processors and AHB Desirable skill set: 1. Exposure to other object oriented verification methodologies like VMM/OVM/UVM and system Verilog. 2. Exposure to C++, TLM and Co-verification Role: 1. Ownership and leadership of verification activity . 2. Good coordination skills to work in a flexible manner with multi-skilled teams and schedule-critical projects Technical interaction with concept, system, program and design teams that are geographically distributed If you are interested please contact using this link

Heinrich Rudolf Hertz's 155th Birthday


Cover Letter's, Resume's and Jobs


Cover letter gets the recipient to read your resume, the resume gets you an interview and the interview gets you the job offer.

iOS 5: Complete list of 200+ Features






If you are an Apple fan like i am, own an IOS device and are curious to know what the full list of features on the new IOS 5 are, then follow the hyperlink!

R.I.P: Steve Jobs (February 24, 1955 – October 5, 2011)


You defined how products should be made and brought to the masses. You re-iterated that successful technologies are which deliver and refine user experience.

IBM, Intel Start $4.4 Billion Chip Venture in New York


Kudos to IBM, Intel and New York state for putting together a deal that will make upstate New York the center of R&D work for chip production on 450-mm and the development of 22- and 14-nm process technology for IBM's so-called "fab club," the Common Platform Alliance. According to New York Governor Andrew Cuomo, the deal, which involves $4.4 billion of investment, will create about 4,400 jobs and help the region retain another 2,500. Many of those jobs might just have easily have ended up in Taiwan, South Korea, Abu Dhabi or elsewhere. The deal is a coup for New York, which is presumably offering the companies tax breaks or other incentives to locate the projects there. (New York state itself is kicking in some $400 million over five years, but Gov. Cuomo made it clear in a statement announcing the projects that no private company will receive any state funds as part of the agreement.) Albany, already home to the semiconductor research consortium Sematech, the Albany Nanotech Complex and, soon, the Global 450 Consortium, increasingly appears to have surpassed the Silicon Valley as the place to be for semiconductor industry R&D. [More]

Intel Medfield Atom based Android Tablet in 2012


Intel is one of few companies that was given access to the Google Android Honeycomb source code–which Google has to this date not made public yet because the company is still optimizing Honeycomb for future phone releases–and it took Intel a few weeks to re-compile the code to make it compatible for its x86 architecture–the code was originally written for ARM chipsets. "It is HOT" [More here]

The wireless generation dance - 1G, 2G, 2Gt, 3G, 3Gt, 4G


The worldwide communication technology thirst and demands in bringing digital information to widespread end users have pushed innovation to extremes. Each successive generation of cellular technology has been based on a new enabling technology. By new, i mean the availability of an existing technology at low cost, or, for handset designers, the availability of a technology sufficiently power efficient to be used in a portable device.




Too often we fail to learn from lessons of the past. As an industry, we have over 20 years of experience in designing cellular handsets and deploying cellular networks. The past tells us precisely what is and what is not possible in terms of future technology deployment. This allows us to detect when reality gaps occur. Reality gaps are those between technical practicality and wishful thinking. They happen all the time and can be particularly painful when technically complex systems are being deployed. Almost all technologies start with a reality gap. The technology fails to deliver as well as expected. Some technologies never close the gap and become failed technologies. Some people can make money from failed technologies, but the majority doesn’t. Failed technologies ultimately fail because they do not deliver user value. We also tend to forget that user expectations and customer expectations change over time. A technology has to be capable of sufficient dynamic range to be able to continue to improve as the technology and user expectations mature. Failed technologies often fail because they cannot close the reality gap and cannot catch up with changing user expectations. One example of a failed technology is WiMax!

Successful technologies are that which deliver along the whole industry value chain—device vendors, handset manufacturers, network manufacturers (software and hardware vendors), network operators, and end users. I aim to show in this article how different generations of wireless technology has been evolving to become a successful proposition, both technically and commercially. I hope you enjoy reading this article and hope to get your feedback.

The cellular wireless communications industry witnessed tremendous growth in the past decade with over four billion wireless subscribers worldwide. The first generation (1G) analog cellular systems supported voice communication with limited roaming. The second generation (2G) digital systems promised higher capacity and better voice quality than did their analog counterparts. Moreover, roaming became more prevalent thanks to fewer standards and common spectrum allocations across countries particularly in Europe.

The two widely deployed second-generation (2G) cellular systems are GSM (global system for mobile communications) and CDMA (code division multiple access). As for the 1G analog systems, 2G systems were primarily designed to support voice communication. In later releases of these standards, capabilities were introduced to support data transmission.

However, the data rates were generally lower than that supported by dial-up connections. The ITU-R initiative on IMT-2000 (international mobile Telecommunications 2000) paved the way for evolution to 3G. A set of requirements such as a peak data rate of 2 Mb/s and support for vehicular mobility were published under IMT-2000 initiative. Both the GSM and CDMA camps formed their own separate 3G partnership projects (3GPP and 3GPP2, respectively) to develop IMT-2000 compliant standards based on the CDMA technology. The 3G standard in 3GPP is referred to as wideband CDMA(WCDMA) because it uses a larger 5MHz bandwidth relative to 1.25MHz bandwidth used in 3GPP2’s cdma2000 system. The 3GPP2 also developed a 5MHz version supporting three 1.25MHz subcarriers referred to as cdma2000-3x. In order to differentiate from the 5MHz cdma2000-3x standard, the 1.25MHz system is referred to as cdma2000-1x or simply 3G-1x.

The first release of the 3G standards did not fulfill its promise of high-speed data transmissions as the data rates supported in practice were much lower than that claimed in the standards. A serious effort was then made to enhance the 3G systems for efficient data support. The 3GPP2 first introduced the HRPD (high rate packet data) system that used various advanced techniques optimized for data traffic such as channel sensitive scheduling, fast link adaptation and hybrid ARQ, etc. The HRPD system required a separate 1.25MHz carrier and supported no voice service. This was the reason that HRPD was initially referred to as cdma2000-1xEVDO (evolution data only) system. The 3GPP followed a similar path and introduced HSPA (high speed packet a
ccess) enhancement to the WCDMA system. The HSPA standard reused many of the same data-optimized techniques as the HRPD system.

A difference relative to HRPD, however, is that both voice and data can be carried on the same 5MHz carrier in HSPA. The voice and data traffic are code multiplexed in the downlink. In parallel to HRPD, 3GPP2 also developed a joint voice data standard that was referred to as cdma2000-1xEVDV (evolution data voice). Like HSPA, the cdma2000-1xEVDV system supported both voice and data on the same carrier but it was never commercialized. In the later release of HRPD, VoIP (Voice over Internet Protocol) capabilities were introduced to provide both voice and data service on the same carrier. The two 3G standards namely HSPA and HRPD were finally able to fulfill the 3G promise and have been widely deployed in major cellular markets to provide wireless data access.

A quick summary of the different generations!
First generation (1G).
AMPS/ETACS handsets in the 1980s required low-cost microcontrollers to manage the allocation of multiple RF (radio frequency) channels (833 × 30 kHz channels for AMPS, 1000 × 25 kHz channels for ETACS) and low-cost RF components that could provide acceptable performance at 800/900 MHz.

Second generation (2G). GSM, TDMA, and CDMA handsets in the 1990s required low-cost digital signal processors (DSPs) for voice codecs and related baseband processing tasks, and low-cost RF components that could provide acceptable performance at 800/900 MHz, 1800 MHz, and 1900 MHz.

Third generation (3G). W-CDMAand CDMA2000 handsets require—in addition to low-cost microcontrollers and DSPs—low-cost, low power budget CMOS or CCD image sensors; low-cost, low power budget image and video encoders; low-cost, low power budget memory; low-cost RF components that can provide acceptable performance at 1900/2100 MHz; and high-density battery technologies.

Beyond 3G systems While HSPA and HRPD systems were being developed and deployed, IEEE 802 LMSC (LAN/MAN Standard Committee) introduced the IEEE 802.16e standard for mobile broadband wireless access. This standard was introduced as an enhancement to an earlier IEEE 802.16 standard for fixed broadband wireless access. The 802.16e standard employed a different access technology named OFDMA (orthogonal frequency division multiple access) and claimed better data rates and spectral efficiency than that provided by HSPA and HRPD.

Although the IEEE 802.16 family of standards is officially called WirelessMAN in IEEE, it has been dubbedWiMAX (worldwide interoperability for microwave access) by an industry group named theWiMAX Forum. The mission of theWiMAX Forum is to promote and certify the compatibility and interoperability of broadband wireless access products. The WiMAX system supporting mobility as in IEEE 802.16e standard is referred to as MobileWiMAX. In addition to the radio technology advantage, MobileWiMAX also employed a simpler network architecture based on IP protocols.

The introduction of Mobile WiMAX led both 3GPP and 3GPP2 to develop their own version of beyond 3G systems based on the OFDMA technology and network architecture similar to that in MobileWiMAX. The beyond 3G system in 3GPP is called evolved universal terrestrial radio access (evolved UTRA) and is also widely referred to as LTE (Long-Term Evolution) while 3GPP2’s version is called UMB (ultra mobile broadband). It should be noted that all three beyond 3G systems namely Mobile WiMAX, LTE and UMB meet IMT-2000 requirements and hence they are also part of IMT-2000 family of standards.

Long-Term Evolution (LTE) The goal of LTE is to provide a high-data-rate, low-latency and packet-optimized radioaccess technology supporting flexible bandwidth deployments. In parallel, new network architecture is designed with the goal to support packet-switched traffic with seamless mobility, quality of service and minimal latency. The air-interface related attributes of the LTE system are summarized in Table 1.1. The system supports flexible bandwidths thanks to OFDMA and SC-FDMA access schemes. In addition to FDD (frequency division duplexing) and TDD (time division duplexing), halfduplex FDD is allowed to support low cost UEs. Unlike FDD, in half-duplex FDD operation a UE is not required to transmit and receive at the same time. This avoids the need for a costly duplexer in the UE. The system is primarily optimized for low speeds up to 15 km/h. However, the system specifications allow mobility support in excess of 350 km/h with some performance degradation. The uplink access is based on single carrier frequency division multiple access (SC-FDMA) that promises increased uplink coverage due to low peak-to-average power ratio (PAPR) relative to OFDMA. The system supports downlink peak data rates of 326 Mb/s with 4 × 4 MIMO (multiple input multiple output) within 20MHz bandwidth. Since uplink MIMO is not employed in the first release of the LTE standard, the uplink peak data rates are limited to 86 Mb/s within 20MHz bandwidth. In addition to peak data rate improvements, the LTE system provides two to four times higher cell spectral efficiency relative to the Release 6 HSPA system. Similar improvements are observed in cell-edge throughput while maintaining same-site locations as deployed for HSPA. In terms of latency, the LTE radio-interface and network provides capabilities for less than 10 ms latency for the transmission of a packet from the network to the UE.

Evolution to 4G The radio-interface attributes for Mobile WiMAX and UMB are very similar to those of LTE given in Table 1.1. All three systems support flexible bandwidths, FDD/TDD duplexing, OFDMA in the downlink and MIMO schemes. There are a few differences such as uplink in LTE is based on SC-FDMA compared to OFDMA in Mobile WiMAX and UMB. The performance of the three systems is therefore expected to be similar with small differences. Similar to the IMT-2000 initiative, ITU-R Working Party 5D has stated requirements for IMT-advanced systems. Among others, these requirements include average downlink data rates of 100 Mbit/s in the wide area network, and up to 1 Gbit/s for local access or lowmobility scenarios. Also, at the World Radiocommunication Conference 2007 (WRC-2007), a maximum of a 428MHz new spectrum is identified for IMT systems that also include a 136MHz spectrum allocated on a global basis. Both 3GPPand IEEE 802LMSCare actively developing their own standards for submission to IMT-advanced. The goal for both LTE-advanced and IEEE 802.16m standards is to further enhance system spectral efficiency and data rates while supporting backward compatibility with their respective earlier releases. As part of the LTE-advanced and IEEE 802.16 standards developments, several enhancements including support for a larger than 20MHz bandwidth and higher-order MIMO are being discussed to meet the IMT-advanced requirements.

1G
AMPS family - AMPS · TACS · ETACS
Other - NMT · Hicap · Mobitex · DataTAC

2G
GSM/3GPP family - GSM · CSD
3GPP2 family - cdmaOne (IS-95)
AMPS family - D-AMPS (IS-54 and IS-136)
Other - CDPD · iDEN · PDC · PHS

2G transitional (2.5G, 2.75G)
GSM/3GPP family - HSCSD · GPRS · EDGE/EGPRS
3GPP2 family - CDMA2000 1xRTT (IS-2000)
Other - WiDEN

3G (IMT-2000)
3GPP family - UMTS (UTRAN) · WCDMA-FDD · WCDMA-TDD · UTRA-TDD LCR (TD-SCDMA)
3GPP2 family - CDMA2000 1xEV-DO (IS-856)

3G transitional (3.5G, 3.75G, 3.9G)
3GPP family - HSPA · HSPA+ · LTE (E-UTRA)
3GPP2 family - EV-DO Rev. A · EV-DO Rev. B
IEEE family - Mobile WiMAX (IEEE 802.16e-2005) · Flash-OFDM · IEEE 802.20

4G (IMT-Advanced)
3GPP family - LTE Advanced
IEEE family - IEEE 802.16m

AMD processor goes to extremes, gets Guinness World Record


Intel brandishes first Google Android tablet


Openpicus releases new applications


openPICUS is an open source wireless platform that uses Wi-Fi and freeRTOS to connect things to the web. The guys from openpicus have released some new applications. One new feature is hibernation mode for lower energy use with battery-powered applications. The other new feature is integration with ThingSpeak.
All you have to do is download the ThingSpeak.com Library from openPICUS and use it with your FlyPort Wi-fi device. Now, you can use sensors connected to ThingSpeak for data logging, visualizations, and access to all of the ThingSpeak apps, such as ThingTweet and ThingHTTP. Here's the video...

Intelligent 4G basestations to be powered by Intel


The Inquirer reports that Ubiquisys has announced that it will develop WiFi base stations using Intel's processors. The intelligent base stations that Ubiquisys is developing are small cells for use in public spaces and big businesses. The need for Intel's processor comes from the growing need to have content within the principality of the base station rather than pulling everything off the internet.

EEWeb Site of the day - May 25, 2011


We are listed on EEWeb Site of the day - May 25, 2011. EEWeb is a premier electrical engineering community that strives to offer its members the best online resources for hardware designers. EEWeb is independently owned and operated by co-founders Cody Miller and Joe Wolin. The development of the site began in late 2007 and was released in late 2010. We have partnered with Digi-Key Corporation as an exclusive sponsor of EEWeb and we are proud to promote Digi-Key's first-class products and services.

Cyclic Redundancy Checking (CRC) - Part 3


Augmentation is a technique used to produce a null CRC result, while preserving both the original data and the CRC checksum. In communication systems using cyclic redundancy checking, it would be desirable to obtain a null CRC result for each transmission, as the simplified verification will help to speed up the data handling.

Traditionally, a null CRC result is generated by adding the cyclic redundancy
checksum to the data, and calculating the CRC on the new data. While this
simplifies the verification, it has the unfortunate side effect of changing the data. Any node receiving the data+CRC result will be able to verify that no corruption has occurred, but will be unable to extract the original data, because the checksum is not known. This can be overcome by transmitting the checksum
along with the modified data, but any data-handling advantage gained in the verification process is offset by the additional steps needed to recover the original data.

Augmentation allows the data to be transmitted along with its checksum, and still obtain a null CRC result. As explained before when obtain a null CRC result, the data changes, when the checksum is added. Augmentation avoids this by shifting the data left or augmenting it with a number of zeros, equivalent to the degree of the generator polynomial. When the CRC result for the shifted data is
added, both the original data and the checksum are preserved.

In this example, our generator polynomial (x3 + x2 + 1 or 1101) is of degree 3, so the data (0xD6B5) is shifted to the left by three places or augmented by three zeros.
0xD6B5 = 1101011010110101 becomes 0x6B5A8 = 1101011010110101000.

Note that the original data is still present within the augmented data.
0x6B5A8 = 1101011010110101000
Data = D6B5 Augmentation = 000
Calculating the CRC result for the augmented data (0x6B5A8) using our generator polynomial (1101), gives a remainder of 101 (degree 2). If we add this to the augmented data, we get:
0x6B5A8 + 0b101 = 1101011010110101000 + 101
= 1101011010110101101
= 0x6B5AD

As discussed before, calculating the cyclic redundancy checksum for 0x6B5AD will result in a null checksum, simplifying the verification. What is less apparent is that the original data is still preserved intact.

0x6B5AD = 1101011010110101101
Data = D6B5 CRC = 101

The degree of the remainder or cyclic redundancy checksum is always less than the degree of the generator polynomial. By augmenting the data with a number of zeros equivalent to the degree of the generator polynomial, we ensure that the addition of the checksum does not affect the augmented data.

In any communications system using cyclic redundancy checking, the same generator polynomial will be used by both transmitting and receiving nodes to generate checksums and verify data. As the receiving node knows the degree of the generator polynomial, it is a simple task for it to verify the transmission by calculating the checksum and testing for zero, and then extract the data by discarding the last three bits.

Thus augmentation preserves the data, while allowing a null cyclic redundancy checksum for faster verification and data handling.

Will Intel's 3D transistor fuel a tablet fight with ARM?


You can now view and apply for jobs right here on this blog


Please follow the links (View Jobs & Add your resume) on the navigation bar at the top of this Blog. For best results, please fill in form to Add your resume and also e-mail your resume to the contact listed on View Jobs - page. If you have any further questions, please don't hesitate to leave a comment here. Good Luck!

Developing Silicon IP with Open Source Tools


The electronic design automation (EDA) tool industry is big business, and commercial licenses are extremely expensive. Open standards have driven many proprietary EDA technologies to be publicly released as free/libre open source software (F/LOSS) and some have become IEEE standards. In this article, author Arthur Low reviews the history of key advances in ICs and EDA tools. The common theme presented in this article for the driver of technology innovation is the requirement to develop the most advanced microprocessor possible. Today, a low-cost, high-value-added business model can efficiently serve the market for IC subsystems licensed as intellectual property (silicon IP) in the form of compilable source code. Alternatively, for larger SoC designs, engineering budgets can be shifted from the purchase of a relatively small number of high-cost EDA tool licenses to open source EDA technologies that can be run on massive compute-server farms. The two business models are not theoretical, but realistic. The author explains how his company (Crack Semiconductor) developed commercially successful cryptographic silicon IP using entirely open source EDA technologies and how another company (SiCortex) pushed the limits of IC design and open source EDA tools by simulating and verifying a massively parallel supercomputer.

Is Intel Really Rewriting Moore's Law With Atom?


Texas Instruments(TI) to buy National Semiconductor for $6.5 billion


The Wall Street Journal is reporting that TI intends to buy National Semiconductor for $6.5 billion, $25/share. These two semiconductor firms are analog semiconductor powerhouses with large businesses in non-analog markets as well. TI says that this move will immediately grow National’s sales team by 10x.

The article also states that TI has pulled out of the recession with a sharp rebound in orders while National Semi has not done as well. This apparently created a big acquisition opportunity for TI.

The bid's hefty premium casts light on a large but unglamorous semiconductor business—chips based on analog technology and used for such duties as amplifying radio signals in cellphones and managing power consumption in computers.

Intel Mobile Communications (India) - Job Openings


Study gives 4G data performance high marks


Handsets operating on 4G cellular networks offer significant improvement in data transfer performance compared to their 3G predecessors, according to a study evaluating the performance of smartphones available from U.S. national carriers conducted by consulting firm Metrico Wireless Inc. More Here.

ZTE claims 10-Tbps data transmission record


Chinese telecommunications equipment company ZTE Corp. claims to have broken the world record for a single-channel data transmission with a rate of 10 terabits per second over 640-kilometers of optical fiber. This is the equivalent of sending 160 high definition movies every second. More here.

Six ways to manage a side hustle without going insane


A side hustle is anything you are doing outside of your full-time job (like building a business or a blog around something you are passionate about), and often involves an entrepreneurial enterprise of some sort. In this article Jenny Blake shares some tips with you to help you keep things together during the exciting pursuit of what you love