Since the amount of activity in a time step is minimal, why simulate the entire circuit? Why not simulate only the elements that experience signal changes at their inputs? This strategy, employed at a global level, rather than locally, as was the case with stimulus bypass, is supported in Verilog by means of the sensitivity list. The following Verilog module describes a three-bit state machine. The line beginning with “always” is a sensitivity list. The if-else block of code is evaluated only in response to a 1 → 0 transition (negedge) of the reset input, or a 0 → 1 transition (posedge) of the clk input. Results of the evaluation depend on the current value of tag, but activity on tag, by itself, is ignored.
module reg3bit(clk, reset, tag, reg3);
input clk, reset, tag;
output reg3;
reg [2:0] reg3;
always@(posedge clk or negedge reset)
if(reset == 0)
reg3 = 3'b110;
else // rising edge on clock
case(reg3)
3'b110: reg3 = tag ? 3'b011 : 3'b001;
3'b011: reg3 = tag ? 3'b110 : 3'b001;
3'b001: reg3 = tag ? 3'b001 : 3'b011;
default: reg3 = 3'b001;
endcase
endmodule
When a signal change occurs on a primary input or the output of a circuit element, an event is said to have occurred on the net driven by that primary input or element. When an event occurs on a net, all elements driven by that net are evaluated. If an event on a device input does not cause an event to appear on the device output, then simulation is terminated along that signal path.
Your comments will be moderated before it appears here.